Polynomial Questions
Example and Explanation
(a) Show that $(2 x+1)(x+3)(3 x+7)$ can be written in the form $a x^{3}+b x^{2}+c x+d$ where a, b, c and d are integers.

| | $2 x \mid+1$ |
| :--- | :--- | :--- |
| x | $2 x^{2}+x$ |
| +3 | $+6 x \mid+3$ |

	$2 x^{2}$	$+7 x$	+3
$3 x$	$6 x^{3}$	$+21 x^{2}$	$+9 x$
7	$+14 x^{2}$	$+49 x$	$+21 \quad \circ$

$$
6 x^{3}+35 x^{2}+58 x+21
$$

multiply out the
first (A) $a=6$
two brackets

$$
\begin{aligned}
& b=35 \\
& c=58 \\
& d=21
\end{aligned}
$$

(b) Solve

$$
(1-x)^{2}<\frac{9}{25}
$$

$$
\begin{aligned}
& (1-x)(1-x)<\frac{9}{25} \\
\therefore & 1-x-x+x^{2}<\frac{9}{25} 0 \\
\therefore & x^{2}-2 x+1<\frac{9}{25} \\
\therefore & x^{2}-2 x+\frac{16}{25}<0
\end{aligned}
$$

Rearrange to give you quadratic resulting
frame (A) by the remaining
bracket.

when $5 x-8=0$ (total for question $=6$ marks)

Q1
(a) Show that $(2 k+1)(k+3)(3 k+7)$ can be written in the form $a k^{3}+b k^{2}+c k+d$ where a, b, c and d are integers.
(b) Solve $(1-k)^{2}<\frac{9}{25}$

Q2
(a) Show that (8t+7)(3t-9)6t-8)can be written in the form $\mathrm{at}^{3}+\mathrm{bt}^{2}+\mathrm{ct}+\mathrm{d}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are integers.
(b) Solve $(1-t)^{2}<\frac{4}{9}$

Q3
(a) Show that $(5 y+1)(y-7)(y+9)$ can be written in the form $a y^{3}+b y^{2}+c y+d$ where a, b, c and d are integers.
(b) Solve $(1-y)^{2}<\frac{16}{49}$

Q4
(a) Show that $(8 \mathrm{p}+9)(7 \mathrm{p}-12)(7 \mathrm{p}-13)$ can be written in the form $\mathrm{ak}^{3}+\mathrm{bk}^{2}+\mathrm{ck}+\mathrm{d}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are integers.
(b) Solve $(1-p)^{2}<\frac{25}{36}$

Knowledge Test
Complete the following table

n	n^{2}	n^{3}	$n^{3}+n^{2}+n$
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			

