Example and Explanation

(a) Show that (2x + 1)(x + 3)(3x + 7) can be written in the form $ax^3 + bx^2 + cx + d$ where a, b, c and d are integers.

$$\frac{1}{x} \frac{2x^{2}}{2x^{2}} + \frac{1}{x} \frac{3x}{3x} \frac{6x^{3}}{6x^{3}} + \frac{21x^{2}}{49x} + \frac{3}{9x} \frac{1}{49x} + \frac{3}{21x^{2}} + \frac{9x}{49x} \frac{1}{49x} + \frac{3}{21x^{2}} + \frac{9x}{49x} \frac{1}{49x} + \frac{3}{21x^{2}} + \frac{9x}{49x} \frac{1}{49x} + \frac{1}{21x^{2}} \frac{1}{49x} + \frac{9x}{49x} \frac{1}{49x} + \frac{21}{21x^{2}} \frac{1}{49x} \frac{1}{49x} + \frac{21}{21x^{2}} \frac{1}{49x} \frac{1}{49x} \frac{1}{421x^{2}} \frac{1}{41x^{2}} \frac{1}{41x^{2}$$

(a) Show that (2k+1)(k+3)(3k+7) can be written in the form $ak^3 + bk^2 + ck + d$ where a, b, c and d are integers.

(b) Solve $(1-k)^2 < \frac{9}{25}$

Q1

(a) Show that (8t+7)(3t-9)6t-8)can be written in the form at³ + bt² + ct + d where a, b, c and d are integers.

(b) Solve $(1-t)^2 < \frac{4}{9}$

Q2

- Q3
 - (a) Show that (5y+1)(y-7)(y+9) can be written in the form ay³ + by² + cy + d where a, b, c and d are integers.

(b) Solve $(1-y)^2 < \frac{16}{49}$

Q4

(a) Show that(8p+9)(7p-12)(7p-13) can be written in the form $ak^3 + bk^2 + ck + d$ where a, b, c and d are integers.

(b) Solve $(1-p)^2 < \frac{25}{36}$

Knowledge Test

Complete the following table

n	n ²	n ³	n ³ +n ² +n
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			